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Abstract 14 

Our understanding of hydroclimatic processes in Africa has been hindered by the lack of in-situ 15 

precipitation measurements. Satellite-based observations, in particular, the TRMM Multi-16 

Satellite Precipitation Analysis (TMPA) have been pivotal to filling this void. The recently-17 

released Integrated Multi-satellitE Retrievals for GPM (IMERG) project aims to continue the 18 

legacy of its predecessor, TMPA, and provide higher resolution data. Here, we validate IMERG-19 

V04A precipitation data using in-situ observations from the Trans-African Hydro-20 

Meteorological Observatory (TAHMO) project. Various evaluation measures are examined over 21 

a select number of stations in West and East Africa. In addition, continent-wide comparisons are 22 

made between IMERG and TMPA. The results show that the performance of the satellite-based 23 

products varies by season, region and the evaluation statistics. Precipitation diurnal cycle is 24 

relatively better captured by IMERG than TMPA. Both products exhibit a better agreement with 25 

gauge data in East Africa and humid West Africa than in the Southern Sahel. However, a clear 26 

advantage for IMERG is not apparent in detecting the annual cycle. Although all gridded 27 

products used here reasonably capture the annual cycle, some differences are evident during the 28 

short rains in East Africa. Direct comparison between IMERG and TMPA over the entire 29 

continent reveals that the similarity between the two products is also regionally heterogeneous. 30 

Except for Zimbabwe and Madagascar, where both satellite-based observations present a good 31 

agreement, the two products generally have their largest differences over mountainous regions. 32 

IMERG seems to have achieved a reduction in the positive bias evident in TMPA over Lake 33 

Victoria.  34 
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1. Introduction 35 

Our knowledge about rainfall characteristics in Africa has been hampered by the lack of in-situ 36 

observations. (Figures 1a, S1). This is caused by a number of factors including restricted data-37 

sharing policies and poor infrastructure due to economic vulnerability and long-lasting regional 38 

conflicts. Satellite-based precipitation observations have served as an alternative to fill this void, 39 

though insufficient ground-based rainfall records for calibration have posed some concerns for 40 

using these data sets. The TRMM Multi-Satellite Precipitation Analysis (TMPA), in particular 41 

has been successfully used in numerous studies (e.g., Beighley et al. 2011; Naumann et al. 2012; 42 

Dezfuli and Nicholson 2013; Munzimi et al. 2015; Ichoku et al. 2016). Built upon that success, 43 

the Global Precipitation Measurement (GPM) mission has been recently released by NASA and 44 

JAXA as a global successor to the TRMM project (Huffman et al. 2015). The Integrated Multi-45 

satellitE Retrievals for GPM (IMERG), which incorporates observations from several satellites 46 

offers improvements over the TMPA in quality and spatio-temporal resolution of precipitation 47 

data (e.g., Ma et al. 2016; Prakash et al. 2016; Sharifi et al. 2016; Tang et al. 2016a). This is 48 

critical for enhancing our knowledge about various climatic phenomena in Africa that in addition 49 

to their regional implications have significant contribution to the global climate system (e.g., 50 

Swap et al. 1992; Kiladis et al. 2006; Dezfuli and Nicholson 2011; Lawrence and Vandecar 51 

2015; Rivero-Calle et al. 2016). Performance of various aspects of the IMERG precipitation has 52 

been examined in different regions of the world (e.g., Liu 2016; Oliveira et al. 2016; Tan et al. 53 

2016; Tang et al. 2016b; Asong et al. 2017). Such literature, however, is limited for Africa, 54 

primarily due to the lack of in-situ records (Hill et al. 2016; Sahlu et al. 2016; Dezfuli et al. 55 

2017).  56 
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In this paper, we validate the half-hourly IMERG-V04A precipitation, using several weather 57 

stations in tropical Africa with very high temporal resolution. The diurnal variability, annual 58 

cycle, and frequency distribution of rain events from IMERG are compared with in-situ and 59 

several gridded precipitation products. These include TMPA, for which the intercomparison is 60 

performed on the spatial patterns of various evaluation measures over the entire continent of 61 

Africa. This study serves as a follow-up to our recent work (Dezfuli et al. 2017), in which the 62 

same in-situ data along with the IMERG and TMPA observations have been used to examine the 63 

characteristics of rain-producing systems in tropical Africa.  64 

 65 

2. Precipitation Data 66 

Various precipitation data sets are analyzed in order to have a comprehensive representation of 67 

major types of available products that are cited in the literature. These include five different data 68 

sets, obtained from a set of individual stations and four gridded products. Of these four, two are 69 

satellite-based (TMPA and IMERG), one is gauge-based (GPCC), and one is a blended gauge-70 

satellite product (Climate Hazards Group InfraRed Precipitation with Station, CHIRPS).  71 

The in-situ data is provided by the Trans-African Hydro-Meteorological Observatory (TAHMO). 72 

This recent initiative currently consists of about 100 low-cost weather stations, mainly in West 73 

and East Africa, and plans to grow its network to 20,000 stations across the entire continent (Van 74 

de Giesen et al. 2014). The TAHMO stations measure the standard meteorological variables at 5-75 

minute intervals. Most stations, however, have data over a short period or are currently under 76 

quality control. We have selected three stations that met the quality control criteria and have data 77 

over the entire or most of the rainy season of 2015 (Figure 1b): Lela Primary School (LPS) in 78 

Kenya, Kumasi and Navrongo in Southern and Northern Ghana, respectively. Three additional 79 
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stations with a limited data period are also used only for analysis of diurnal variability. The 80 

stations are located within equatorial Africa, where meridional excursion of the tropical rainbelt 81 

creates a strong annual cycle of rainfall (Figure 1c-f; Dezfuli 2017).  82 

The TMPA and IMERG data have been accessed from the NASA Precipitation Measurement 83 

Missions web portal at https://pmm.nasa.gov/. The TMPA-3B42(V7) product used here is 84 

available at daily and three hourly intervals and 0.25° spatial resolution. The IMERG product, 85 

which serves as the successor of TMPA, has a half-hourly temporal and 0.1° spatial resolution. 86 

The “Final Run” product of IMERG-V04A, which is calibrated with the GPCC gauge analysis, 87 

has been utilized. The GPCC First Guess Daily Product, available at 1° grid resolution (Schamm 88 

et al., 2014) is also used for data comparisons. This product incorporates precipitation records 89 

from weather stations across the globe (Figures 1a, S1), collected via the Global 90 

Telecommunication System (GTS). The CHIRPS data is used as the representative of the merged 91 

gauge-satellite products due to its high resolution, low bias, and good gauge-coverage over 92 

Africa, compared to other similar products (Funk et al., 2015). However, this expedited study 93 

does not intend to perform a full intercomparison among various data sets of this type, but to 94 

validate IMERG-V04A data using in-situ gauge measurements in parts of Africa where this has 95 

not been feasible hitherto, and to evaluate the performance of the current IMERG version vis-à-96 

vis those of other comparable precipitation data sets. Several other gridded precipitation products 97 

that may be used for a more comprehensive inter-comparison analysis include 98 

Tropical Applications of Meteorology using SATellite (TAMSAT, Maidment et al. 2014), 99 

African Rainfall Climatology (ARC, Novella and Thiaw 2013), PERSIANN-CDR (Ashouri et al. 100 

2015), GPCP (Adler et al. 2003) and CMORPH (Joyce et al. 2004). 101 

 102 
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3. Analysis Approach 103 

Gridded data are spatially interpolated to the location of each TAHMO station for comparison. 104 

For each application, the mean precipitation rate over its associated interval is used. Annual 105 

cycles and probability distribution functions (PDF) of daily rainfall from various products are 106 

compared. The diurnal cycle is examined for three products with sub-daily records: TAHMO, 107 

IMERG, and TMPA. The TAHMO and IMERG data are averaged over the time range ±90 108 

minutes from the nominal 3-hourly observation times used in TMPA. In addition, since IMERG 109 

is intended to replace TMPA, the spatial patterns of various evaluation measures of the two 110 

products are compared over the entire continent of Africa. These statistics include the correlation 111 

coefficient (CC), mean normalized absolute difference (MAD), multiplicative bias (mBias), 112 

probability of detection (POD), false alarm ratio (FAR), frequency bias (FBS), Critical Success 113 

Index (CSI), and Heidke skill score (HSS). For continent-wide spatial analysis, days with rainfall 114 

less than 1 mm are excluded in calculations of CC, MAD and mBias. The same threshold is used 115 

for categorical indices. For point analysis, a 0.2 mm threshold is applied, in order to ensure a 116 

sufficient number of dates required for the evaluation process. The definition of validation 117 

statistics, described in many references (e.g., Wilks, 2011), is provided in the Supplementary 118 

Materials using contingency Table S1. Considering reference data (e.g., in-situ observations), R, 119 

and the data that is validated, V, the POD is the ratio of the correct detection of rain events; FAR 120 

is the fraction of the days in V that are wrongly detected as rainy; FBS is the ratio of the number 121 

of rainy days in R to the number of rainy days in V; CSI is an accuracy measure that is 122 

particularly useful when the rainy days are substantially less frequent than the no-rain days; HSS 123 

is an accuracy measure that represents the proportion of correct matches between R and V to no-124 

skill random matches. 125 
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 126 

4. Intercomparison of gauge and gridded data 127 

Figures 2-4 show the evaluation results for LPS, Kumasi and Navrongo, respectively. Various 128 

validation measures, calculated for these stations, are provided in Tables 1, S2, and S3. The LPS, 129 

located in East Africa (Figure 2) has a bimodal annual cycle of rainfall. The two rainy seasons, 130 

occurring during March-April-May and October-November-December are known as “short 131 

rains” and “long rains”, respectively. TMPA captures the annual cycle relatively better than 132 

IMERG, particularly during the short rains when differences are most noticeable among all the 133 

products. IMERG provides a better diurnal cycle than TMPA with respect to magnitude and 134 

temporal variation. The performance of both products varies by the season with improvements 135 

during the long rains (Figure 2c,d,e). However, the distribution of daily rainfall intensity 136 

provided by IMERG is very similar to that of the gauge observations, as evident in their PDFs 137 

and various percentiles (Figure 2f). The CHIRPS precipitation overall seems to have the largest 138 

differences with the gauge data, reflected in the short rains and the extreme daily rainfall rates. 139 

The second TAHMO station, Kumasi (Figure 3), has also a bimodal annual cycle determined 140 

by the meridional excursion of the tropical rainbelt (e.g., Dezfuli 2017). Note that this station 141 

does not have data available during March and April. Although all products capture the month-142 

to-month variability, some differences are noticeable in the rainfall magnitudes. For example, all 143 

gridded data underestimate the rainfall in May; CHIRPS is negatively biased in June; and 144 

IMERG presents an overestimation in December. The relatively better performance of TMPA 145 

than IMERG in representing the annual cycle is also reflected in the PDFs, where 90th and 95th 146 

percentiles of TMPA better agree with the in-situ observations (Figure 3f). The diurnal cycle of 147 
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rainfall, however, is reasonably well captured by both products throughout the year, though 148 

IMERG offers some advantages over TMPA during February. 149 

The third TAHMO station used here is Navrongo in Northern Ghana (Figure 4). This station, 150 

located in the West African savanna, has a unimodal annual cycle with the peak rainy season 151 

occurring during July-August-September (JAS). Although the annual cycle of various gridded 152 

data sets has a good agreement with the in-situ observations, IMERG shows a relatively better 153 

performance than the others. However, August that receives the maximum amount of rainfall is 154 

overestimated by all products. The distribution of daily rainfall during April-October (Figure 4f) 155 

is relatively better represented by the TMPA than other data sets, though IMERG’s mean 156 

intensity is equally close to the gauge data. The GPCC and CHIRPS have very similar PDFs. The 157 

diurnal cycle is analyzed over three seasons (May-June, July-September, and October), 158 

representing onset, peak and cessation of the West African Monsoon (WAM), respectively. 159 

Although the temporal variation of diurnal cycle is fairly captured, the agreement between in-situ 160 

and satellite-based observations is less than that shown for the other two stations, and several 161 

differences are noticeable. However, important features such as the morning peak (06:00 LST) 162 

during the JAS rainy season are detected. These rainfall characteristics are consistent with those 163 

previously identified over the same region (Fink et al. 2006; Pfeifroth et al. 2016).  164 

Three additional stations are also examined, two of which (Masindi, Uganda and Kapsabet, 165 

Kenya) are located in East Africa and one (Enchi, Ghana) in West Africa (Fig. S2). Only diurnal 166 

variability of rainfall was investigated using data from these stations, because availability of 167 

continuous good quality records from them was limited to a two-month period. Enchi shows very 168 

good agreement with both the IMERG and TMPA satellite products during the October-169 

November period. The diurnal cycle of the East African stations during the short-rains is also 170 
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reasonably similar to IMERG and TMPA, though some differences are apparent in the temporal 171 

variation and magnitude of the rainfall rates. These differences are manifested as overestimation 172 

by the satellite-based observations, mainly by IMERG at 03:00-06:00 LST in Masindi and by 173 

TMPA at 18:00 LST in both stations. 174 

 175 

5. Spatial variability: IMERG vs. TMPA 176 

Various evaluation measures are examined for comparing IMERG and TMPA over the entire 177 

continent of Africa (Figure 5). Each product is also separately compared with the GPCC daily 178 

data (Figures S3, S4). This allows us to relate the IMERG-TMPA comparison patterns to 179 

availability of the GPCC records, used for calibration of these products. Both IMERG and 180 

TMPA show generally similar CC patterns with the GPCC. However, except for FAR, TMPA 181 

seems to agree with GPCC slightly better than does IMERG. Of all the regions where GPCC 182 

records exist, Zimbabwe and Madagascar present the highest agreement with both satellite-based 183 

observations, consistent with previous studies (Dinku et al. 2008). Direct comparison between 184 

IMERG and TMPA (Figure 5) reveals that the compatibility between the two products is also 185 

regionally heterogeneous and varies by the evaluation measure. Note that IMERG has been 186 

treated as the reference data in this comparison. Generally, the two products have their largest 187 

differences in most parts of the Horn of Africa and over the Atlas Mountains and the adjacent 188 

Mediterranean coastal area. These areas have the most complex terrain on the continent so the 189 

distribution of gauges, product resolution, and the choice of retrieval algorithms would have a 190 

significant impact. These differences are manifested primarily in the spatial patterns of MAD, 191 

POD, FBS, CSI, and HSS. These statistics collectively represent the similarity between IMERG 192 

and TMPA regarding the mean rainfall rate, detection of rain occurrences, and the accuracy of 193 
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correct matches relative to that of a no-skill random chance. The regions with the largest 194 

differences in temporal variability of the two products, shown in CC patterns, generally appear 195 

over the mountainous areas, although this is less evident in Angola and Tanzania. The spatial 196 

patterns of CC, POD, FAR, FBS, and CSI show a strong consistency between IMERG and 197 

TMPA over the Congo Basin and South Sudan. The four categorical statistics measure the 198 

agreement in frequency of the daily rain occurrences. However, these regions are located in areas 199 

with virtually no GPCC stations, implying that this agreement may not necessarily reflect the 200 

quality of satellite observations. The mBias shows remarkably low values over Lake Victoria. 201 

Similar results have been found for inland water bodies in China, where IMERG precipitation 202 

values much more closely agree with the in-situ observations than does TMPA (Tang et al. 203 

2016c). This improvement has been attributed to the unified and updated passive microwave 204 

algorithm used in the GPM products. 205 

 206 

6. Discussion and Conclusions 207 

As a follow-up to our recent work (Dezfuli et al. 2017), we have used data from TAHMO to 208 

improve our knowledge about rainfall characteristics in West and East Africa, validate the 209 

IMERG-V04A precipitation data in these regions, and compare it with its successful predecessor 210 

(TMPA) over the African continent. The complete areal coverage of satellite-based observations 211 

is vital for capturing the intrinsic spatial heterogeneity of rainfall variability (Dezfuli 2011; Badr 212 

et al. 2016) in the data-limited continent of Africa, and this can be further facilitated by the 213 

potential of more in-situ measurements and ongoing improvements in IMERG. In addition, 214 

IMERG can help us better understand the synoptic-scale meteorology of the region, as the 215 

western and eastern parts of Africa have been shown to climatically communicate through 216 
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regional atmospheric circulation (Dezfuli et al. 2015). The high temporal resolution of in-situ 217 

and IMERG observations, in particular, has enabled us to better capture the regional variability 218 

of sub-daily rainfall. The results show that the diurnal cycle has a single-peak between 15:00-219 

21:00 LST in East Africa and between 18:00-21:00 LST in Southern Ghana. However, the West 220 

African savanna exhibits a bimodal diurnal cycle that peaks at 06:00 and 18:00 LST during its 221 

rainy season, JAS, consistent with the previous studies over this region (Fink et al. 2006; 222 

Pfeifroth et al. 2016).  223 

Although IMERG, partly due to its improved resolution, shows some advantages over TMPA 224 

in capturing the diurnal cycle, a clear superiority for other evaluation aspects cannot be claimed. 225 

In general, the choice of data set would depend on the region, season and objective of study. 226 

Various issues have made such decisions quite challenging. That includes the uncertainty due to 227 

the comparison of point and gridded data sets in this study, or the fact that we are not able to 228 

interpret the good agreement between IMERG and TMPA over the regions with no gauge 229 

records available for their calibration (the Congo Basin and South Sudan). In addition, this study 230 

is based on one year of data, which does not represent a full range of climate conditions. The 231 

growth of TAHMO network in coming years will hopefully help mitigate these issues and add to 232 

available gauge records, with potential usefulness for improving IMERG data that can offer 233 

significant contribution to understanding the climate processes in Africa and their implications to 234 

water, agriculture, and health sectors.  235 
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Table 1. Evaluation measures based on daily data for IMERG and TMPA at three TAHMO’s 365 

stations for the months in 2015 with available in-situ observations. Days with rainfall less than 366 

0.2 mm are excluded in calculations of CC, MAD and mBias. The same threshold is used in 367 

contingency table of the categorical statistics. This threshold ensures a sufficient number of 368 

dates, required for evaluation process.  369 

Station Period Data CC MAD mBias POD FAR FBS CSI HSS 

LPS, KE Feb-Dec IMERG .54 .81 1.04 .84 .17 1.02 .71 .58 

TMPA .55 .83 1.08 .81 .20 1.01 .68 .53 

Kumasi, GH Feb-Nov IMERG .42 .83 .73 .73 .35 1.12 .52 .38 

  TMPA .57 .82 .85 .72 .32 1.06 .54 .42 

Navrongo, GH Apr-Oct IMERG .62 .80 1.01 .64 .20 .80 .55 .53 

TMPA .54 .86 .92 .69 .27 .95 .55 .50 

  370 
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Figures 371 

Figure 1. (a) Mean number of stations per month used in GPCC First Guess Daily product 372 

during 2015. (b) Location of the TAHMO weather stations. For Stations Set 1, annual cycle, 373 

diurnal cycle and probability density function of daily rainfall are examined. For Stations Set 2, 374 

only diurnal cycle is examined. (c-f) Long-term mean (1998-2015) patterns of monthly 375 

precipitation, using TMPA 3B42 data. 376 

Figure 2. (a) Location of the station of interest (yellow square), Lela Primary School (LPS) in 377 

Kenya, and other stations (purple circles). (b) Annual cycle of rainfall for various data sets 378 

during 2015. (c-e) Diurnal cycle of rainfall for LPS, IMERG and TMPA in three different 379 

seasons. Blue dashed lines (TMPA_LTM), shown in b-e represent long-term mean of annual and 380 

diurnal cycles, based on TMPA data over 1998-2015. These are used to determine the condition 381 

of year 2015 relative to the climatology. (f) Probability density function of daily rainfall for 382 

various data sets; white circle shows the mean and horizontal lines represent different 383 

percentiles. All gridded data are spatially interpolated to the location of the station. 384 

Figure 3. The same as Figure 2, but for Kumasi, Ghana. 385 

Figure 4. The same as Figure 2, but for Navrongo, Ghana. 386 

Figure 5. (a) Topographic map of Africa. (b-i) Various validation measures used for comparison 387 

between IMERG and TMPA during 2015. IMERG is considered as reference data. Grids with a 388 

large number of zero daily rainfall values are masked, using some restricting criteria (see 389 

Supplementary Materials).   390 
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 406 

Figure 3. The same as Figure 2, but for Kumasi, Ghana.  407 
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 408 

Figure 4. The same as Figure 2, but for Navrongo, Ghana.  409 
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 410 

Figure 5. (a) Topographic map of Africa. (b-i) Various validation measures used for comparison 411 

between IMERG and TMPA during 2015. IMERG is considered as reference data. Grids with a 412 

large number of zero daily rainfall values are masked, using some restricting criteria (see 413 

Supplementary Materials). 414 


